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Abstract 

Participants (N=811) practiced paired-associate recognition with and without an interference 
manipulationänd then practiced a pattern-recognition skill where patterns discriminated had 
features in common. Structure models of the covariances among task reaction times indicated 
two factors or abilities. The first was a baseline factor, hypothesized to include the ability to 
strengthen traces and other abilities common to all tasks. The second was a resistance-to- 
interference factor, or the ability to quickly retrieve associations with elements in common with 
non-retrieved associations. Further modeling on a subset of the sample (n=434) showed the 
baseline factor to reflect a memory-strength ability, independent of other confounding abilities 
(e.g. motor, reading abilities). Both memory abilities are discussed broadly with respect to 
cognitive skill acquisition, controlled vs. automatic processing, and activation. 



Strength and Resistance to Interference in Practiced Recognition: Memory-Retrieval Abilities 
Investigated through Latent Structure Modeling. 

Manipulations of memory strength typically involve variations of practice or exposure on 
materials composing a single memory trace. Such manipulations may reflect the quality of 
encoding operations. Manipulations of interference typically involve practice or exposure on 
materials composing multiple traces sharing elements. Such manipulations may reflect the 
efficiency of retrieval operations. These two constructs often show up as distinct parameters in 
general memory theories (e.g. image-strength vs. sampling probability in Gillund and Shiffrin's, 
1984, SAM model, node strength and fan in Anderson's 1983, ACT* model). Given historically 
distinct manipulations and theoretical roles for strength and interference in the modeling of 
memory tasks, these constructs could reflect different mechanisms or stages of processing within 
the individual. 

Evidence that memory strength and interference affect different stages of information 
processing can be found in, at least, two types of empirical study. One source is studies that find 
additive effects of strength and interference manipulations (Anderson, 1981; Gillund and 
Shiffrin, 1984; Howe, 1995). Such effects suggest different stages of processing are affected 
(Sternberg, 1969). Another source is speed-accuracy trade-off studies. When different parts of 
the speed-accuracy function are affected by manipulations of strength and interference, it implies 
these manipulations affect different stages (e.g. Dosher 1981, 1984). 

One can also assess whether memory strength and interference reflect different 
processing stages by assessing whether these manipulations reflect different types of human 
ability. Presumably, if performance under different conditions depends on different (i.e. 
somewhat independent) abilities, performance under these conditions would employ different 
stages of processing as well. An "individual differences" demonstration of a stage is orthogonal 
to the other sources cited above. In other words, additive factors or speed-accuracy results do not 
imply anything definitive about the individual differences present in different stages. For 
instance, it is possible to have additivity of an effect with the absence of individual differences in 
the effect (i.e. a significant factor effect with the absence of subject-by-factor interactions). One 
could also have significant individual-differences in each (additive) factor, but have the 
individual-differences observed for factors correlate perfectly (as with a more global factor 
affecting multiple distinct stages, Jensen, 1987). 

To observe distinctness in memory strength and interference as abilities, one must show 
that performance rankings differ among people, in a quantifiable sense, depending on what the 
task depends on (i.e. memory strength or interference). One must also show thai Ihese rank 
differences are reliable in some sense, or have some generality across different tasks thought to 
depend on the hypothetical ability. Such observations depend on psychometric or correlational 
observations, which do not depend on the mean data. 

The recent emergence of latent-structure modeling routinely allows the observation of 
different types of ability in the sense just described. That is, one can demonstrate two classes of 
tasks are composed of two different abilities, by assessing their data in the context of models 
with and without the assumption of two abilities. However, an initial prerequisite is finding a set 



of tasks that differentially relate to the hypothesized abilities, memory strength and resistance-to- 
interference ability. I have chosen a pair-recognition paradigm, because that paradigm was 
amenable to constructing such tasks. 

Experimental Strategy 

The general hypothesis tested in Experiment 1 was that recognition memory tasks with an 
interference component could not be perfectly explained by other recognition tasks hypothesized 
to rely mainly on memory strength. This finding would be expected under the assumption that 
recognition tasks with interference involve some unique ability above and beyond the ability to 
accumulate memory strength. I used two pair-recognition tasks to experimentally deconfound a 
resistance-to-interference ability from an ability to passively accumulate memory strength. I used 
a third task, procedural learning, to demonstrate the generality of the strength-independent 
interference ability across two different types of task hypothesized to share (the distinct) 
interference ability. 

Specifically, structure modeling was employed as a type of theoretical regression. Two 
underlying latent factors (i.e. abilities) were posited as the independent variables for predicting 
pair recognition and procedural learning reaction times. Task reaction times were then regressed 
on these two latent factors in order to fit the observed variance/covariance matrix for all reaction 
time scores. Of interest was whether models with two ability factors fit better than models with 
only one factor. A one-factor model would be implied if ones susceptibility to interference were 
totally determined by ones ability to accumulate memory strength. 

This type of structure modeling is similar to multivariate regression in which observed 
variables are predicted by other observed variables (c.f. Long, 1983). One might wonder 
whether theoretical (latent) variables should be preferred to observed predictors in a multivariate 
regression analysis. The chief benefit for latent variables is protection against certain kinds of 
measurement ambiguity. In the typical case where all variables (predictors and the criterion) are 
observed, independent (or incremental) prediction for two variables predicting a third could 
mean that the two variables measure different (independent) components of the third. However, 
it could also mean that the two predictors measure the same component of the third but less 
reliably alone than in combination with each other (leading to significant regression betas for 
each predictor in the same standardized regression equation predicting the criterion). 

However, latent factors do not have this measurement ambiguity. Because latent structure 
models estimate both how much an observed score depends on its uniqueness from other scores 
(i.e. its "error") and how much it depends on shared factors, reliability of the score is part of the 
model. Furthermore, the factors themselves, as modeled entities, have perfecl leliabilily. Hence, 
when two factors independently predict an observed score, this unambiguously implies multiple 
sources of ability (or variance) for that score. Of course, one caveat to this modeling boon is that 
the latent-structure model has to be "correct" or "true" in some sense. In practice, this caveat is 
assessed to the extent competing models have been shown inferior. 

Figure 1 (Model 1) shows a two-factor model for tasks employed in Experiment 1. Of 
principal interest are the arrows originating from the factors (ellipses) which terminate at 
observed scores (labeled boxes). The factor-to-score arrows represent the regression betas of 



latent factors on observed scores (e.g. performance on the 5th epoch of the procedural learning 
task, performance on the 4th alternate form of pair recognition under interference). These betas 
provide an index of the effect size for a factor (described later in the discussion to ExperimemT) 

Recognition 
without 
Interference 
(Baseline tasks) 

Recognition 
with 
Interference 
(Baseline + 

interference 
tasks) 

MODEL 1 
Procedural 
Learning (first, 
middle, and last 
epochs) 

X2(17)=104 

BBNNI=965 
RMSEA=.079 

Figure 1. 

Two factors in practiced recognition, a baseline factor including memory strength, and a factor 
for resisting interference. Score abbreviations are Bl, B2, Baseline (no-interference) tasks- BI1 - 
BI4 Basehne+interference tasks; PL1, PL3, PL5 procedural learning epochs (early, middle, and 
late). All standardized betas (factor paths) are significant (z > 3.0), except underlined path 
estimates whose unstandardized weights were fixed at 1.0 in order to free the factor variance 
parameters (zs for which are also displayed). Fit statistics are Bentler-Bonett Nonnormed fit 
Index (BBNNI) and Root Mean Square Error of Approximation (RMSEA). n=811. 

The figure shows the underlying cause of the correlations between tasks to reside (in part) 
from separable interference and baseline abilities. Tasks presumed to have no interference only 
correlate to other conditions via a baseline factor common to all tasks. This baseline factor 
includes a memory-strength factor, but other factors as well (hence S+ in the figure). Other tasks 
are presumed to reflect two underlying factors, baseline and resistance to interference The 
interference factor is "nested" (c.f. Gustafsson and Balke, 1993) in the baseline factor, in the 
sense that the interference ability is unique to a subset of tasks, which also depend on baseline 
processes. Nested factors may be thought of as factors existing on the "residual" of a score after 



prediction by the factors they are nested within. In other words, Model 1 assesses whether there 
is any reliable variance left over after the effects of the baseline factor have been accounted for. 

If another factor than the baseline is required in Model 1, the additional factor can be 
attributed to an interference ability by virtue of the experimental design. Specifically, one of my 
tasks has been designed to differ from baseline conditions only by the addition of an interference 
manipulation. Hence, when the baseline-plus-interference task and some other task (i.e. the 
procedural learning task) are found to share variance above what can be accounted for by the 
baseline factor, the conclusion is that the new ability was "introduced" with the modification of 
the baseline task. This general tactic of defining an ability by an extension of a baseline task is a 
frequent stratagem in the individual-differences literature (e.g. Kyllonen and Tirre, 1991; 
Sternberg, 1977; Sternberg and Gastel, 1989; Tirre and Pena, 1993; Woltz, 1988; Yee, Hunt, and 
Pellegrino, 1989). There have also been more formal discussions of the value of this technique 
(e.g. Donaldson, 1983). 

The baseline task has no interference effects associated to it within the model. I argue that 
my implementation of the baseline task is what actually achieves this, but alternatively, I could 
say that the model I will explore will assess the reasonableness of this conjecture for the baseline 
task. The baseline task was a word-pair recognition task in which pair words occurred only in 
one response category. Hence, participants only accumulated memory strength on word-to- 
response associations as they practiced recognizing pairs. In addition to memory strength 
(ability), this task plausibly contains speed of basic motor response and letter/word reading 
(abilities). The baseline+interference task was identical to the baseline task except for the 
attribute of interference. Specifically, the baseline+interference task had each word of a pair 
occur in both response categories. Hence, participants used the particular combination of words 
to determine the response, and interference arose from multiple use of the same words in 
different pairs requiring different responses.' 

One could demonstrate the existence of interference ability in recognition reaction time 
(hereafter, RT) just by modeling correlations among baseline and baseline+interference pair- 
recognition tasks. However, my intent was also to examine the generality of the interference 
construct beyond simple pair recognition. Therefore, the procedural learning task from Woltz, 
1988, was also considered. Unlike the pair-recognition tasks, which used different materials with 
each replication, the procedural learning task is a rule-based categorization task on a large set of 
repeated materials. Substantial learning has been shown in this task (Woltz, 1988). Hence, within 
the latent-structure modeling one can also look at the effects of strength and interference ability 
in the context of acquiring a simple cognitive skill. 

The learning context is a side issue frnm the primary nr\e> nf determining whether 
strength and interference operations reflect two different abilities. However it is an important 
side issue that helps to clarify the nature of the abilities studied. If resistance-to-interference 
shows independence from strength (i.e. two factors are necessary), then that independence could 
reflect either a controlled or an automatic processing ability (or possibly a combination of both). 
I won't rigorously define automatic vs. controlled processing other than referring to an 
ecologically valid diagnostic related to skill acquisition. If resistance-to-interference is primarily 
a controlled process, it should decline in its importance to procedural learning as the latter is 
practiced (Ackerman, 1988; Woltz, 1988). However, if resistance-to-interference is primarily an 



automatic processing ability, its importance to procedural learning should increase as the latter is 
practiced. There are reasons for expecting a greater impact of a resistance-to-interference ability 
(should such exist) both in the early and late phases of the procedural learning, as I develop next. 
The next section will also explain why I chose the procedural learning task as a different type of 
memory task (from pair recognition) that is limited by both memory strength and interference. 

Cognitive Skill Acquisition 

In Woltz (1988) "procedural learning" was used to investigate how information- 
processing abilities changed in a cognitive skill as it was practiced. Hence, Woltz designed 
procedural learning to be like a typical cognitive skill, albeit with simple rules so the task could 
be rapidly learned in the laboratory. Consistent with this characterization, participants progressed 
from slow and error-prone problem solving to fast and accurate performance with modest 
practice. Decreases in RT also followed the power-law function typical in skill acquisition 
(Newell and Rosenbloom, 1981). 

In procedural learning participants classify numbers in varying format by applying pre- 
memorized rules: 

"If a number is in WORD-form, check whether the number is ODD or EVEN. If ODD 
and in the LOWER half of the screen or EVEN and in the UPPER half, press the RIGHT button. 
For any other WORD configuration press the LEFT button. 

If a number is in DIGIT-form, check whether the number is BIG (>10) or SMALL (<10). 
If the number is SMALL and in the UPPER half of the screen or BIG and in the LOWER half 
press the RIGHT button. For any other DIGIT configuration press the LEFT button." 

Early in skill learning, reading out and interpreting these complex propositions was 
hypothesized to tax working memory, but as learning progressed working memory would pose 
less of a limitation. Woltz (1988) demonstrated this by showing correlations of working memory 
to procedural learning declined with practice on the latter. This was hypothesized to be a 
consequence of the skill becoming production-based with practice. Some reasonable productions 
for practiced procedural learning are (after Woltz, 1988): 

If WORD, ODD, and LOWER HALF are present, press the RIGHT BUTTON. 

If WORD, EVEN, and LOWER HALF are present, press the LEFT BUTTON. 

If WORD, ODD, and UPPER HALF are present, press the LEFT BUTTON. 

If WORD, EVEN, and UPPER HALF are present, press the RIGHT BUTTON. 

Woltz (1988) also hypothesized that production-based performance should depend 
critically on the ability to strengthen the associations between condition elements of productions 
(italicized above). He demonstrated this by showing that a person's memory-strengthening ability 
related to late procedural performance better than early procedural performance. This was in 
contrast to working memory, which related most clearly to early performance. Memory- 



strengthening ability (then called an "activation savings" ability, c.f. Woltz and Shute, 1993) was 
measured by the amount of repetition priming exhibited in another task. 

The current study advocates resistance to interference as another memory-retrieval ability 
relevant to late skill performance. Interference can limit speed late in a skill given such effects 
can be found after extended practice (Pirolli and Anderson, 1985) and given the form 
productions for the procedural learning task are expected to take with task practice. Such 
productions should share elements that have conflicting responses associated with them (e.g. the 
chunk word/odd/upper-half which matches a production for pressing left and the chunk 
word/odd/lower-half which matches a production for pressing right). Anderson's 1983, 1993 
memory-retrieval models would predict this sharing of elements to slow pattern-matching for 
reasons similar to that described for fan-effect paradigms (Anderson, 1983). In fan-effect 
paradigms, recognition RT for memorized sentences is longer for sentences composed of 
concepts used in other learned sentences. The frequency of use of a concept in distinct sentences 
is what corresponds to the concept's fan. 

However, resistance-to-interference could also have a large effect early in procedural 
learning, given Woltz's (1988) finding that working memory is important to early performance, 
and given recent findings suggesting interference in recognition and working memory are 
sometimes related. Conway and Engle (1994) have shown some fan effects to be sensitive to 
working-memory capacity while other fan effects are not. The baseline+interference task, 
considered as a type of fan task, would seem to belong to their working-memory class (as I argue 
later). Hence, one might expect any distinct interference ability demonstrated beyond strength 
and other baseline abilities to reflect a type of "controlled processing" or limitation of 
"attentional" resources to use Conway and Engle's (1994) terms. 

Experiment 1: Two Factors in Practiced Recognition 

Method 

Summary of data collection studies 

Data collection for Experiment 1 occurred in three studies—A (n=179), B (n=193), and C 
(n=434). Data collection for Experiment 2 was from Study C. With respect to measuring a 
resistance-to-interference ability independently from strength and other baseline abilities 
(Experiment 1), the 3 studies can be aggregated as they used identical procedural learning and 
pair-recognition tasks. Study A and B differ only in the ordering of pair-recognition tasks and in 
the inclusion of some unique filler tasks coming between pair-recognition tasks. For Study A, 
baseline tasks were given before baseline+interference tasks. For Study B the reverse was true. 
For Study C ordering was balanced. Study C is the best design from the perspective of separating 
a strength ability from other confounding abilities in the baseline tasks (Experiment 2). That is in 
addition to the baseline and baseline+interference tasks, Study C contains tests relevant to 
measuring these confounding abilities (while Study A and B do not). There was also a Study D 
(n=478), not included in Experiment 1 and 2 analyses. This study was a close replication of the 
procedure and results of Study C (Experiment 2). This sample is not included because Armed 
Services Vocational Aptitude (ASVAB) scores were unavailable (due to the timelag in getting 



such scores and not because the sample was special). Such scores were critical to an analysis in 
Experiment 1. However, I provide more on Study D below (footnote 5). Study D is of interest as 
it empirically shows the replicability of a fairly complicated latent-structure model applied to a 
new sample. 

Participants 

Participants were 934 (81% male) Air Force basic trainees. However, owing to missing 
data for reasons described in the results, 811 participants were analyzed. All participants scored 
at or above the 40th percentile on the Armed Forces Qualifying Test, all had finished high school 
(or the equivalent) and had vision corrected to Air Force standards. 

Apparatus 

All experimental tasks were given on 486 50 MHz or higher computers housed in library- 
style carrel in a single-room with 40 testing stations. All computers used mouse, keyboard, and 
15-17 inch color monitors, with an approximate viewing distance of about 65 cm. Reaction time 
measurement was accurate to the nearest msec. 

Procedure 

Task orders 

In all studies (A-D), the pair-recognition tasks were given in the first half of the testing 
session, followed by a 5-min. break, followed by the procedural learning task. Procedural 
learning was always given after pair-recognition tasks, so that temporal proximity effects 
(Chaiken, 1993) would work against the hypothesis that strength and resistance-to-interference 
abilities are consequential to late procedural learning performance. A temporal proximity effect 
is the tendency for two scores to be correlated with each other simply because the two scores 
have been observed close together in time. By giving procedural learning after the pair- 
recognition tasks, least practiced scores for procedural learning are closer in time to the pair- 
recognition scores than most practiced procedural learning scores. Thus, if there is a bias for 
pair-recognition to correlate to procedural learning owing to temporal proximity, this bias is 
stronger for the earliest procedural learning scores. 

Pair recognition: Baseline and baseline+interference tasks 

Each pair-recognition replication used different word materials, requiring new 
associations to be learned for each replication. Tasks were given in two replication sets with one 
baseline task and two baseline+interference tasks in each set. Twice as many 
baseline+interference tasks were given to equate diversity of materials over baseline and 
baseline+interference measurement (i.e. baseline+interference tasks use half as many words as 
baseline tasks). For half the participants, baseline+interference tasks were given before baseline 
tasks in each replication set, while for the other half, baseline tasks were given first. 



Materials for tasks were selected without replacement from a pool of 48 3-letter nouns 
(i.e. ace, art, axe, box, bus, car, cop, cup, day, dog, dot, eel, eye, fog, fun, fur, hat, hip, hut, ice, 
ion, job, joy, log, lot, lox, nun, nut, oat, ore, owl, pen, pit, pot, sap, sin, sky, tea, ton, toy, vat, vip, 
war, web, wig, yak, yen, you). Words were randomly assigned to every condition and task 
replication for each participant. Each pair-recognition task used six pairs. Using unique letters to 
represent unique words, the following pair schemas were learned for a baseline task: AB, CD, EF 
(requiring right button responses) and GH, IJ, KL (requiring left button responses). For 
baseline+interference tasks the pair schemas were MN, OP, QR (right button) and MP, OR, QN 
(left button). 

Participants initially studied the 3 right-button pairs in random order, twice, for 2.5 
seconds a pair. Participants were told to memorize these pairs as "critical", to be later 
distinguished from "bogus" (hereafter, referred to as "foil") left-button pairs. Pairs were 
presented with one word (3.5 cm) below the other in a large lowercase font (i.e. 1 cm height), 
with the top word at the center screen. Specific words occurred at either the top or bottom 
position with equal frequency during study and test. Following study, participants were given a 
block of 24 pairs to classify in random order (4 replications of the 3 critical and 3 foil pairs). An 
error on a critical pair resulted in feedback and an additional 3 seconds of study for that pair. An 
error on a foil pair resulted in pair erasure and the message "Bogus Pair" for 1.5 seconds. The 
study/test procedure repeated two more times. 

The participants were instructed to use the study/test blocks as their "grace period" in 
preparation for the real test blocks. These required 24 consecutive-correct responses to finish a 
set. If participants made an error before the end of the set, they restarted a new set of 24. 
Participants were required to do six such sets before leaving a pair-recognition task. Despite the 
fact that high accuracy was enforced, participants were also told that speed was important. In 
particular, at the end of each successfully completed set, the time to complete the 24 correct 
items was presented along with the participant's best score (either from the current or from a past 
set within the task). The participant's best score was identified as a "time to beat". Participants 
were then shown a histogram of their individual RTs, so they could see how their responses 
clumped together or spread apart along an ability scale where fast responses were high ability. 

The average of median RTs for the 6 error-free sets is used as a score for each replication 
of a task. While this score has a disadvantage of reflecting different levels of practice for 
participants on these tasks, individual differences reflected by trials-to-criterion and error-rate 
scores from a specific task did not substantially overlap with the individual differences reflected 
by the RT score for that task. (This is an observation restricted to the current data and 
speed/accuracy sets and should not be construed as a general claim.) This was assessed by 
statistically removing-error rate and trials-to-criterion effects from the RT scores prior to their 
use in analysis and then comparing the results with the same analysis of uncorrected scores. 
Additionally, Pirolli and Anderson (1985) have shown equivalent performance when the amount 
of practice on specific materials is varied for a task similar to the current one (i.e. no difference 
between 12 and 24 repetitions per pair within a testing session). This suggests that the amount of 
practice at pair recognition can be varied between participants without necessarily varying the 
amount of memory strength reflected by the tasks. 



Procedural learning task 

The procedural learning task is from the "low-attention demand" condition of Woltz 
(1988), the rules for which were given before. Procedural learning uses numbers (between 1 and 
20, excluding 10) as stimuli. Stimuli were presented in the same font as pair-recognition tasks. 
These stimuli were either uppercase words (e.g. "TWELVE", "FIVE") or digits (e.g. "12", "5"). 
Hence, word and digit stimuli differed in spatial extent as they did in Woltz (1988). 

The basic teaching procedures of Woltz (1988) were used. These procedures included an 
instructional overview of the task, a 2-minute study period of the task rules, a demonstration of 
some representative problems, and explanatory error feedback throughout the task. Such 
feedback re-presented the rules relevant to the problem just received and derived the correct 
answer for the participant. Participants had to click a mouse button to leave the error feedback 
and resume the task. 

Changes from Woltz (1988) were made to the end-of-block feedback in order to parallel 
the procedures described in the pair-recognition tasks, where a high-accuracy set was imposed. 
Participants were told they had a grace period of 7 blocks of 24 procedural learning problems 
before 24 consecutive-correct responses would be required to leave a set. At set 8 they were 
alerted that the grace period was over and that they needed to complete 25 more (error-free) sets. 
For the purposes of data analysis, consecutive stretches of 24 problems were used, not error-free 
sets. Hence, a given practice level on procedural learning does imply the same number of 
problems for every participant. 

There were also minor cosmetic changes from Woltz (1988). The current version's font 
was larger. Stimuli were presented in upright (9x12 cm) rectangles centered in the screen. The 
properties UPPER half (2.5 cm from top) and LOWER half (2.5 cm from bottom) applied to the 
rectangles. Mouse rather than keyboard responses were given. 

Stimulus balancing and randomization were adhered to within a completed error-free set. 
In particular, each set was balanced with respect to the number of different kinds of stimuli that 
could be presented (e.g. Digits, Big, Lower half). Stimulus randomization was in effect for all the 
partial sets. The specific stimuli were presented equally often across the task on average. 

Results 

Descriptive Data 

Participants completed different numbers of procedural learning problems given variation 
in the number of set restarts each participant experienced. Therefore, an arbitrary block number 
had to be chosen, after which data would not be considered and before which a participant would 
not be considered. The block number, 40, was chosen because it maximized participant n and the 
amount of task practice all participants experienced. This amount of practice is 256 problems 
greater than for Woltz (1988). Using these criterion for exclusion, participant exclusion rate was 
relatively low (at least compared to Woltz, 1988, i.e. 13% vs. 22%). 
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Five procedural learning RT "epoch" scores were then computed by averaging 8 
consecutive block medians for each. (Hence, the first RT epoch contains the grace period). 
However, for simplicity of presentation, only the first, third, and fifth epoch scores are used in 
structure modeling. 

Basic mean data, broken down by pair-recognition task order (baseline task given before 
or after baseline+interference tasks), is shown in Table 1. Unlike procedural learning data, mean 
pair-recognition RTs are for the 6 error-free sets, whereas trials-to-criterion and percent correct 
apply to all the data. Significance levels are p<001, unless otherwise noted. For the 
baseline+interference tasks, a within-subjects MANOVA found both a significant replication 
effect (F(3,2427)=83; MSE=380486), and a replication by order interaction (F(3,2712)=8.7; 
MSE= 143787). The first baseline+interference task had longer RTs and that tendency was 
amplified when baseline+interference tasks were given before baseline tasks. For analyses 
comparing the two types of task to each other, RTs for critical (i.e. studied) and foil pairs were 
averaged over replications. A large task difference (i.e. interference effect) was found 
(F(l,810)=8137; MSE=127916097). Other significant effects were found (e.g. critical vs. foil 
differences and their interaction with type of task, baseline or baseline+interference); however, 
these do not bear on the issues discussed. 
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Correlational Results 

Table 2 shows the partial correlations between baseline+interference replications and 
procedural learning performance epochs after controlling for the baseline task scores. This was 
computed in two ways. For the columns labeled "Raw", RT scores for pair recognition and 
procedural learning were used without taking into account participants' "error characteristics". 
These error characteristics are percent correct and trials to criterion for the pair-recognition tasks, 
and percent correct for the procedural learning epochs. For columns labeled "Adjusted", RT 
scores have been adjusted by partialing from each score all error characteristics from all scores. 
The results are highly similar despite the fact error characteristics, for a particular task, correlate 
significantly with the RT score for that task. The signs of the correlations (i.e. negative for 
accuracy and positive for trials-to-criterion) suggest stimulus-specific effects (i.e. some 
participants receiving harder pairs to learn than others in a pair-recognition replication). 

The partial correlations in Table 2 provide empirical results relevant to the hypothesis 
that resisting interference in these tasks is both a unique ability and relevant to late skill. First, all 
observed partial correlations are significant which is consistent with uniqueness. Second, the 
dominant trend is that partials are larger with later procedural learning epochs. Recall that this ^ 
relationship is expected given late-occurring procedural learning productions will have "fanned" 
components. However, there is another unanticipated trend, namely that the earlier 
baseline+interference tasks predict less well than the later ones. 

Table 2. 
Partial correlations for raw and accuracy-adjusted RTs: Baseline+interference (4 replications) 
against procedural learning (5 levels of practice) controlling for baseline task RTs. 

Raw 
BI1 BI2 BI3 BI4 

PL1 .23 .16 .19 .17 

PL2 .24 .25 .28 .31 

PL3 .25 .25 .33 .30 

PL4 .21 .24 .34 .32 

PL5 .22 .24 .35 .33 

BI1 
.21 
.24 
.26 
.23 
.22 

Adjusted 
BI2 BI3 
.16 
.23 
.23 
.23 
.23 

19 
30 

,34 
.35 
.36 

BI4 
.17 
.31 
.29 
.31 
.33 

Notes See Table 1 for column and row definitions, df on partials = 807, 789, for raw and 
adjusted respectively. For adjusted scores, each RT score was regressed on 18 scores and the 
residual score was used in the analysis. The 18 scores are accuracy and trials-to-critena for pair- 
recognition tasks (12 scores), PL accuracy for each epoch (5 scores), and the between-subjects 
order variable. Rxx (split-half) for PL1 to PL5: .95, .97, .96, .96, .96, respectively. Rxx for BI1- 
BI4 and Bl, B2 (alternate forms) may be derived for adjusted scores from Table A2. 
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Modeling Results 

More details on Model 1 

In Model 1, resistance-to-interference and the baseline contribute to the observed 
procedural learning between-epoch correlations. However, three pairwise-correlations among the 
epoch residuals (parameters represented by the bi-directional arrows joining pairs of es in Figure 
1) also contribute. The epoch residual errors represent the part of procedural learning scores that 
is independent of the model (i.e. not explained by model factors). These are conceptually 
analogous to coefficients of alienation (Cohen and Cohen, 1975) in multiple regression. 

The fact that there are correlations among the procedural learning e terms reflects the 
empirically large task-specific correlations among the procedural learning scores even after the 
effects of model factors are considered. Figure 1 indicates the large size of these correlations 
(minimum r=.45), and, in fact, their importance to overall model fit (e.g. the minimum z > 10 for 
these correlations) was too large to ignore in the modeling. In general, any large effect in the data 
that is left unrepresented in the model which is fit to the data, can result in a misleading set of 
"best-fitting" parameters. For instance, parameters representing a hypothesis (e.g. resistance-to- 
interference exists across baseline+interference and procedural learning tasks) may obtain values 
that refute the hypothesis, even while the hypothesis is true. This could happen because the 
parameters' best-fitting values account more for the (larger) unspecified effects in the model than 
their intended effects. Such, in fact, would happen in the current data. Therefore, correlating the 
errors of procedural learning scores is an important constant feature in every model considered in 
this paper. 

Alternatively, one could choose to represent the task-specific variance in procedural 
learning as a procedural learning factor (either nested in the other factors or not). Models along 
these lines provide results that fully comport with results to be presented. 

Model Adequacy 

The 2-factor structure in Figure 1 (Model 1) was fit via the EQS program (Version 5.2, 
Bentler, 1993). Figure 1 shows the standardized measurement betas for adjusted score data. 
When the model is run on raw (unadjusted) data quantitative results are highly similar. (See 
Table 2 for definitions of adjusted and raw scores). 

All paths from factors were "significant" (the least significant being resistance to 
interference on epoch 1 of procedural learning, z = 4.8). While significance levels depend on 
sample size, they are also model theoretic. A parameter is assessed as significant by how 
unlikely it would be for the estimate ofthat parameter to be zero (i.e. absent from the model) 
given the data under consideration and the maximum-likelihood estimation procedure (p-value 
determined by the normal z statistic, Bentler, 1993). The parameter for the variance of the 
resistance-to-interference factor was also significant (e.g. z = 6.4, for adjusted data; z = 5.6, for 
the raw data). If the baseline factor had been sufficient to explain the correlations among tasks, 
then the variance for this parameter (along with the paths from the interference factor to 
observed scores) should have been zero. However, more complete tests of the existence of an 
interference factor can only be provided by comparisons between specific models (next section). 
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The fit for Model 1 is also good. This can be seen by the high Bentler-Bonnet 
Nonnormed Index (BBNNI) given in Figure 1. Bentler (1993) suggests a minimum fit of .90 as 
cutoff level for adequate model description of the data. The BBNNI is a comparison between the 
"lack of fit" by the theoretical model and the lack of fit by a "null" model that posits no 
intercorrelations among scores (Hoyle and Panter, 1995, p. 166). Another fit statistic (provided 
along with the BBNNI) is the Root Mean Square Error of Approximation (RMSEA, Brown and 
Cudeck, 1993). The statistic's principal benefit is as a complimentary perspective on model fit, 
which is not based on the comparison to the "null" model. RMSEAs not exceeding .08 are 
desireable, with a fit value around .05 being ideal (a subjective opinion, Brown and Cudeck, 
1993, p. 144). In any case, model fits, by themselves, are not as useful as comparisons between 
models. There may be some 1-factor models that provide "good" fit as I explore next. 

Comparison of 1-factor and 2-factor models 

The following analyses are for adjusted-score models, as parallel analyses for raw scores 
replicate the findings closely. Comparisons between 1 and 2-factor models are central to the 
current study. In particular, my goal is to show procedural learning and baseline+interference 
tasks are related to each other through a common interference factor that has independence from 
the baseline factor. It is critical that such interference be shown important for both 
baseline+interference and procedural learning tasks to demonstrate that the factor is not 
attributable to the unique (but reliable) variance specific to a single task. Hence, the one-factor 
models that I consider as strong challengers to the two-factor model are models in which one- 
factor explains the commonality between baseline+interference and procedural learning tasks, 
but other task factors may be entertained to explain correlations among replicates of the same 
task. Recall that in the two-factor approach (Model 1) there is already an implicit task factor for 
procedural learning (i.e. the correlations among the residual procedural learning errors). 
Therefore, the one-factor alternative models I assess remove interference from prediction of 
procedural learning but retain task-specific "interference" as an explanation for correlations 
among the baseline+interference replicates. There are two classes of models that accomplish this. 

One class results from removing (i.e. fixing) free parameters from Model 1. This class of 
model is "nested" in Model 1 (i.e. Model 1 is a superset of this class of models) and can be 
compared to Model 1 using a Chi-square difference test. This test is a %2 statistic derived from 
the difference in model chi-squares with df equal to the difference in model dfs. If the statistic is 
significant, so is the loss in model fit. For the nested class of alternatives, perhaps the strongest 
model to test would set the three paths from the interference factor to procedural learning scores 
to zero. The resulting loss of model fit from removing these paths was significant (Ax2(3) = 47). 

Another class of model is the set not strictly nested in Model 1. This set can be obtained 
by setting some Model 1 parameters to zero and also adding parameters that were not included in 
Model 1 (i.e. assumed zero in Model 1). Perhaps the strongest exemplar from this class is Model 
1A shown in Figure 2. 
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MODEL 1A 

e057 

Recognition 
without 
Interference 

Procedural 
Learning (first, 
middle, and last 
epochs) 

Recognition 
with 
Interference 

X2(18)=99 

BBNNI=.969 
RMSEA=075 

Figure 2. 

A one-factor alternative to Model 1 which allows only the baseline factor explanation for pair- 
recognition and procedural learning correlations. All else is the same as in Figure 1. This model 
appears to fit as well as Model 1 because it accounts for an unanticipated effect in the data that is 
not represented in Model 1. When the two models are equated for this, Model 1 fits better (see 
text for discussion). 

Model 1A also removes paths from the interference factor to procedural learning, but 
adds an implicit baseline+interference factor like the implicit procedural learning factor already 
present (in all models). This is accomplished by adding six pair-wise covariances among residual 
variances (i.e. correlating the e-terms) for baseline+interference tasks. 

One can also compare non-nested models, provided the observed variables used in each 
model is the same (as in the current case). The approximate posterior probabilities for two 
competing models may be computed from differences in model chi-squares and number of free 
parameters used in each model (i.e. the complement of a model's degrees of freedom). This is 
the same information that the chi-square difference test uses; however, the result of the 
procedure is not a %2 but a direct statement of likelihood of a proposed model in the context of 
other models and given the observed data. The full procedure and derivation is in Fornell and 
Rust (1989). That procedure is more general than its use here. For instance, there can be more 
than one alternative model and the effect of prior probabilities of the models (if known) can be 
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weighted into the computation of likelihood. In the current assessment, I assume only one 
competing model (i.e. the non-nested Model 1 A) and equal prior-probabilities for both models. 

With this procedure Model l's likelihood (relative to Model 1A) was estimated at only 
p=035, which reflects the fact that Model 1A was observed to fit better (x2(18) = 99) and have 
more degrees of freedom. However, the validity of this outcome can be questioned. Specifically, 
önegeneral danger with non-nested model comparisons is that large extra-model effects can be 
left out of one model (i.e. Model 1) but included in the other (i.e. Model 1A). Therefore Model 
1A may fit better (or as well) as Model 1 for a reason other than the sufficiency of a single factor 
expressing the commonality between pair recognition and procedural learning. Such an 
extraneous reason may be present in the non-nested part of Model 1 A, i.e. the residual 
covariances among the baseline+interference tasks. While correlations among 
baseline+interference tasks are owing to the two model factors in Model 1, proximity effects 
may also be driving the observed correlations (c.f. Chaiken, 1993). Proximity effects could be 
expected for the first and the second pair of baseline+interference tasks, as these tasks are 
administered close together in time regardless of the order condition (baseline-first vs. 
baseline+interference-first). 

When I investigated adding such proximity parameters to Model 1 by correlating the 
errors of only the adjacent baseline+interference tasks, the parameter for the first pair of 
baseline+interference tasks was highly significant (A%2(1) = 57). However, the parameter for 
the 2nd pair of baseline+interference tasks was not significant (A^2(l) <1). Adding just the first 
parameter causes the RMSEA fit index for Model 1 to drop from .079 to .049 (.090 to .056 in the 
raw data). Addition of this highly significant parameter also left the score loadings on resistance- 
to-interference (i.e. the factor betas for scores regressed on that factor) largely unchanged. The 
exception was the first two baseline+interference tasks loading less on the interference factor 
(especially the first baseline+interference score). When I compared Model 1 with the proximity 
parameter to Model 1A (which already has that parameter), the likelihood flipped in favor of 
Model 1 with likelihood not distinguishable from 1.0. 

I also tested the idea that the proximity effect obscured model comparisons in another 
way. I fit both Models 1 and 1A (suitably modified) to a reduced set of scores that excluded the 
first baseline+interference score. This would remove the proximity effect from both Models 1 
and 1 A, while maintaining a fair comparison between models. When this was done, the 
goodne'ss-of-fit comparison (as indexed by model chi-squares) clearly favored Model 1 (Model 1 
X2(l 1)=15, Model 1A x2(14)=74), and again the posterior probability computed for Model 1 in 
the context of Model 1A was indistinguishable from 1.0. 

Finally, there is yet another way to show, at least indirectly, that an interference factor is 
"needed" beyond Model lA's "machinery". If one nests some extra machinery in Model 1A that 
reflects a general interference factor, then these extra parameters should not improve Model 1 As 
fit (given Model lA's assumption of no general interference factor). Directly nesting all the 
interference parameters from Model 1 (i.e. the factor and its seven paths) will not work, because 
the model produced by this is not identifiable. However, another manifestation of a significant 
interference factor (between procedural learning and baseline+interference tasks) would be 
significant covariances between the e terms of baseline+interference and procedural learning 
scores, after Model lA's parameters explained the data as best it could. Adding parameters for 
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these (4 baseline+interference x 3 procedural learning) correlations results in an identifiable 
model, and that model fits significantly better than Model 1A (Ax,2(12) = 81, p<.001). 

Resistance to interference: automatic or controlled processing ability? 

The last two sections indicated that interference had some uniqueness from the baseline 
ability factor as well as some generality across pair recognition and procedural learning. Models 
that exclude an interference factor (by making it task-specific) fit the data more poorly than 
models with an interference factor that has some generality. Given this, one can consider 
interference ability in the context of skill acquisition. In particular, if procedural learning 
automates with practice, then interference ability could be considered to have automatic- 
processing characteristics if it has a stronger relation to later epochs of procedural learning than 
earlier ones. Conversely, a controlled-processing ability would be indicated, if that ability more 
strongly related to early procedural learning (c.f. Woltz, 1988). In fact, the model parameters 
(see Figure 1) indicate that resistance to interference has its greatest impact at later rather than 
earlier epochs; however, the difference between loadings for early and late epochs is not 
especially large (e.g. .24 vs. .32, respectively). Is this trend reliable or significant? 

One approach to answering this question would be to bring a controlled-processing factor 
into the model to check whether the latent-structure analysis had sufficient power to detect a 
controlled-processing diminution with procedural learning practice. In this analysis a surrogate 
for controlled-processing ability is related to procedural learning, along with the baseline and 
interference factors. This model extended Model 1 to include a global controlled-processing 
factor in which all other factors were nested. In addition to assessing whether a controlled- 
processing decline can be detected, one can view the impact of having controlled-processing in 
the model on the interference factor's prediction of procedural learning. Under the assumption 
that interference and controlled processing overlap substantially, one would expect the predictive 
relation between interference and procedural learning to be decreased with controlled processing 
added to the model. 

To put controlled processing in the model, four new tests from the Armed Services 
Vocational Aptitude Battery, or ASVAB, were added to the analysis. These tests were 
Arithmetic Reasoning, Math Knowledge, General Science Knowledge, and Word Knowledge, 
and were given some months before as part of the Air Force selection procedure. Kyllonen 
(1993) has shown that the general ability derived from the ASVAB is strongly correlated to a 
working memory factor derived from a battery of diverse information processing tests (i.e. r 
approaching 1). As working memory ability is often considered a strong correlate of controlled- 
processing ability (Ackerman, 1988; Woltz, 1988), the ASVAB tests provide plausible 
surrogates for controlled-processing ability. 

The results for this model may be simply described. The predictive relationships between 
Model l's factors and procedural learning were unchanged, both in magnitude and significance 
(e.g. procedural learning regressed on the interference factor were .24, .31, and .32, for Is, 3r , 
and 5th procedural learning epochs). In addition, the relation of the general factor to procedural 
learning declined as the skill was practiced as expected. For adjusted data, the weights were -.27, 
-.15, -.11 for 1st, 3rd, and 5th epochs. Z statistics were 6.5, 3.9, 2.9, respectively for the same. The 
weights are negative because a high achievement score goes with low reaction times. Both the 



different trends for the two factors (interference and controlled processing) and their 
independence of prediction indicate their distinctness as psychological factors. These results are 
inconsistent with a controlled-processing characterization of the interference ability introduced 
by the baseline+interference task. 

I have further investigated the plausibility of my controlled-processing "surrogate" 
because these markers are achievement tests and not information processing tests, per se. On 
different subjects than employed here, I have administered the baseline and baseline+interference 
tasks and derived baseline and resistance-to-interference factors on just the pair-recognition 
tasks. Parameter estimates and significance levels were similar to what is reported here for these 
tasks. Using task factors I have tried to predict the quantitative working-memory task from 
Kyllonen and Christal, 1990, which requires the subjects to perform simple arithmetic while 
maintaining a concurrent memory load. The working-memory task is arguably rich in controlled 
processing (c.f. Anderson, Reder, and Lebiere, 1996) but did not measurably load the 
interference factor (i.e. the regression beta for that factor was r=.002; n=392). However, 
consistent with my assumption that the general ability tests employed in the current study were, 
in fact, reasonable estimates of controlled-processing ability, the same working-memory task did 
load significantly on the general-ability factor defined from those tests (r=.581; n=392; z=l 1.0). 

Discussion 

Main results 

Evidence for two distinct factors, a baseline and an interference factor, was found for 
practiced declarative and procedural recognition tasks. This evidence is embodied in the 
comparison of two-factor models to one-factor alternatives. In addition, both factors generally 
increased in importance with procedural learning with practice on the latter, while general ability 
showed a decreasing relationship. 

Woltz (1988) found similar effects, namely a declining relation for working memory 
against procedural learning errors and an increasing relation for memory strengthening against 
procedural learning reaction time. However, in the current study, the different trends for 
controlled-processing ability and the baseline and interference abilities are observed within the 
same procedural learning performance scale (i.e. reaction time). Hence, one can conclude more 
strongly (than in Woltz, 1988) that the differing trends reflect different abilities. In the case 
where different trends are observed across different performance scales (i.e. RT and errors), such 
differences may also reflect the different characteristics of the measurement scales. 

Effect size and robustness of the interference factor 

The magnitude of the interference factor, or the percentage of variance it accounted for in 
observed variables (according to Model 1), was small compared to the baseline. (E.G. 9% of the 
variance in practiced procedural learning and 16% of the variance for later baseline+interference 
tasks. This is obtained by squaring the factor loading, or beta, which is similar to a semi-partial 
in multiple regression). The interference effect measured in reaction time is much larger than 
implied by the model apportionment of individual differences. That is the interference effect, as 
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an RT difference, is about half the size of the baseline RT. However, the mean interference 
effect is not a pure index of resistance-to-interference ability. This can be shown empirically by 
correlating the interference effect (RT increment relative to the baseline) to the baseline RT 
(r(809)=36, and r(809)=. 34 for raw and adjusted data respectively). 

It is a value judgement as to whether the interference loadings are large enough to be 
deemed "interesting" or of practical importance. However, these loadings are at least robust in 
the sense that they cannot be attributed to distributional abnormalities in the data or to the effect 
of outliers. I assessed this by re-running Model 1 on structures derived from scores under both a 
simple rank and a normalized-rank transformation of the individual data. Ranking completely 
changes the distributions of performance scores and also completely removes the distorting 
effects of outliers, if they exist. The models on the ranked scores replicate the findings that two 
factors are needed along with the general magnitude of the loadings. However, ranked models 
assigned the maximum effect of interference on the intermediate procedural learning epoch, and 
assigned larger effects on the first epoch (i.e. a relatively flat function rather than a monotonic 
increasing one). 

I've also looked at the variance/covariance matrix for reciprocal-transformed RTs (i.e. 
rates instead of RTs). This transformation does an excellent job at normalizing RT distributions, 
provided outliers are re-scored to the leading edge of the new (i.e. apparent) distribution. With 
or without (the eight) outliers, two-factor models would be found superior with similar 
parameters and significance levels. In all analyses (rates and ranks) the independence between 
interference and controlled processing was also observed. 

Conceptualizing Resistance to Interference in Practiced Recognition 

Relation to the Fan Effect 

One could doubt that the current results bear on fan effects, because the baseline task 
seems qualitatively different from the propositional retrieval studied in fan-effect experiments, 
and the baseline+interference task at least looks similar to a "low-fan" condition in fan-effect 
experiments. However, the baseline task can plausibly be considered a zero-fan condition 
because every (experimental) path from probe words provides activation toward the correct 
response. When all paths send activation to the same response their effects can be assumed to 
summate (c.f Jones and Anderson, 1987). With the interference manipulation added to the 
baseline, the task becomes a fanned condition, as it is implausible that foil pairs are not learned 
in this task. Therefore, each word in the baseline+interference probe has one irrelevant 
experimental association through which activation is lost. Presumably RT should increase for 
similar reasons as for the fan-effect paradigm, namely, activation loss down an irrelevant 
pathway. For this reason one cannot easily dismiss the current interference manipulation and the 
ability marked by it as being irrelevant to fan effects. 

However, I speculate that the amount of activation in the relevant traces is not the only 
difference between baseline and baseline+interference tasks. An explanation of performance 
differences in terms of a unitary construct (e.g. amount of activation), would suggest that a one- 
factor model should have been sufficient. Conversely, it seems more reasonable, that given 

20 



baseline+interference tasks can define a unique factor, that some qualitatively different types of 
memory processing are also involved in the interference manipulation. 

Lack of strong relation to controlled processing 

Given the interference manipulation is related to fan effects, the characterization of the 
factor as an automatic rather than controlled-processing ability is inconsistent with recent data on 
some fan effects. Conway and Engle (1994) found that "response competition" was sufficient for 
working memory (a.k.a. controlled processing) to correlate with fan effects (see also Cantor and 
Engle, 1993). In the current experiment, every baseline+interference probe word has the required 
response competition, so this task is in Conway and Engle's controlled-processing class of fan 
effect. 

However, the discrepancy between the "automatic" character of the interference factor in 
this study and Conway and Engle's results may only reflect our differing methods. When I 
adopted their methods, I replicated their results. Specifically, when I compared participants from 
the 1st and 4th quartiles of a composite made from my general ability tests (as Conway and 
Engle did with their working-memory measure), participants low in general ability (or working 
memory) had a larger interference effect than people high in general ability. I also observed that 
this difference was reduced after general task practice. The difference between high and low 
ability interference effects was 74 msec initially (i.e. the average of the first pair of 
baseline+interference tasks minus the first baseline task) and was more than halved after general 
task practice (i.e. 32 msec for the average of the second pair of baseline+interference tasks minus 
the second baseline task; main effect of ability: F(l,402)=17.23, MSE=574035; interaction of 
ability with practice: F(l,402)=5.95, p<.02, MSE=88505). 

Hence, the baseline+interference task is sensitive to controlled processing as Conway 
and Engle found. However, the latent structure results do not indicate such sensitivity to be a 
significant part of the factor in common between baseline+interference and procedural learning 
tasks. The fact that both pair recognition and procedural learning are observed under a range of 
practice, probably allowed controlled-processing effects (early in tasks) to be separated from a 
more automatic factor in common with the practiced tasks. 

Smaller interference effects (regardless of ability) were also observed for later 
replications of pair recognition (i.e. for the same extreme-groups analysis described above the 
effect of practice on "fan" effect was significant, F(l,402)=21.23, MSE=315862). Reduced fan 
effects for studied materials given initial practice on different materials has also been reported in 
Pirolli and Anderson (1985, Experiment 4). They interpreted this effect as a speed up in the 
"central processes" relevant to the fan effect (e.g. "comparison of the probe to memory" p. 151). 
However, controlled-processing resources, expended in becoming familiar with the fact-retrieval 
task (c.f. Ackerman, 1988) may also reduce the activation available for "spreading" thereby 
increasing the fan effect. However, such an interactive perspective on controlled processing and 
"automatic" activation processes (c.f. Anderson, Reder, and Lebiere, 1996) should not be 
confused with a perfect tradeoff between the two processing systems. 
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Resistance to interference in practiced recognition and "activation" 

Resistance to interference, in the current study's context, arguably reflects a limitation of 
"activation" similar to that supposed for fan effects. However, Anderson, Reder, and Lebiere 
(1996) have also used the notion of activation limitations to model the effects of concurrent 
memory load on mathematical equation solving, a task arguably very rich in controlled 
processing. The characterization of both fan and working-memory effects as depending on 
activation limitations suggests a more apparent overlap between this study's interference factor 
and controlled processing ability. 

However, despite the impression of a unitary activation in controlled-processing and 
practiced-recognition contexts, Anderson et. al.'s (1996) formulation of activation is not unitary. 
In particular, "source" activation refers to the resource limitation of working memory or "the 
salience or attention given to the [memory probe] cues" (p. 225). On the other hand, another 
sense of activation appears to cover processes linked to "controlling retrieval from declarative 
memory" (p. 225, see also p. 226 top). Anderson et. al. caution the reader that the two senses 
should be kept conceptually distinct. Both types of activation determine the total activation given 
a trace and therefore both types affect processing time. For lack of a better name from the ACT 
literature, I'll refer to the automatic type of activation as "historical", in the sense of depending 
on the frequency of the trace (i.e. memory strength) and the amount of overlap of the trace's 
components with other traces (i.e. fan). The automatic characterization of the interference ability 
found in this study and the lack of relation of interference ability to a working memory task 
indicate that the abilities underlying historical and source activation processes are distinct. 

Skill specificity 

The possibility that different types of recognition (procedural and declarative) depend on 
shared memory abilities, even after significant practice, is a counterexample to the skill- 
specificity hypothesis. This hypothesis purports that abilities underlying a task become less 
general with task practice. Given individual differences shrink with task practice (Hulin, Henry, 
& Noon, 1990; Ackerman, 1987; Fleishman and Hempel, 1954) or become less dominated by 
cognitive resources (Ackerman, 1988), skill-specificity is a natural conclusion. Because this 
issue is taken up in much greater detail in Experiment 2,1 will postpone discussion of it here. 

Experiment 2: The Unique Importance of the Memory-Strength Factor 

Experiment 2 continues to explore the latent-structure methodology as a means of 
decomposing tasks into information-processing stages. As before, such decomposition is 
heuristic only, that is, it depends on the intuition that should a set of tasks exhibit a common 
ability with some uniqueness from other abilities this is fair evidence for a distinct "stage" in 
those tasks. 

The main goal is to investigate the baseline factor, which is hypothesized to contain 
memory strength but other baseline abilities as well. In particular, the baseline factor is 
confounded with speed of motor responding (e.g. speed of selecting and executing the 
appropriate button click) and speed of letter/word operations. Motor ability is expected to 
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increase in importance with skill practice (Ackerman, 1990), so the relative importance of 
memory strength is still moot. 

The importance of a unique memory-strength factor, independent of these confounds, 
depends somewhat on one's perspective. Because memory strength is such a global and 
pervasive parameter in memory models, one is obligated to predict some importance for that 
concept as an individual difference (c.f. Underwood, 1975). In particular, memory strength 
appears to be a good candidate for an ability underlying automaticity. Anderson (1992, p. 170) 
explicitly states that the buildup of strength (for a production) is the "most important" construct 
with regard to ACT*'s explanation of automaticity. Similarly Logan (1990) draws an empirical 
and theoretical link between amount of repetition-priming (a memory-strengthening process) and 
the amount of automaticity exhibited in lexical decision performance. Recall also that Woltz 
(1988) has shown an empirical relation between repetition priming (his memory-strengthening 
measure) and late performance in the procedural learning task. Hence, memory-strength ability 
should be of consequence to skill learning, and of particular importance late in learning where 
automaticity has developed. Finding uniqueness for memory strength from the other baseline 
processes would therefore support cognitive theories of skill acquisition. 

However, from another perspective automated performance might be cognitively lean. At 
least for some theories (Ackerman, 1988, 1990), the automatic phase is associated with motor 
abilities and not cognitive ones. This perspective tends to view individual differences in 
cognitive abilities as negligible in the automatic phase. Hence, memory strength deconfounded 
from motor ability should show relatively little importance to late procedural learning (at least 
when compared to motor ability). 

Model 2 (Figure 3) is a latent-structure model that is relevant to the above perspectives. 
This model extends Model 1 by decomposing the baseline factor of Model 1 into memory- 
strength, letter-word processing, and motor factors. Notice that the memory-strength factor spans 
(i.e. has arrows to) only the learning tasks, while the letter-word processing factor spans two 
replications of a lexical decision task and the learning tasks. These model specifications embody 
a hypothesis that lexical decision indexes a participant's ability for processing double-word 
displays (e.g. reading speed, semantic-memory retrieval speed), but that such ability does not 
depend on the memory-strength and resistance-to-interference abilities in the learning tasks. Also 
inherent in these specifications is the hypothesis that the learning tasks will depend on the letter- 
word factor in addition to memory strength. 

These specifications implement a similar analysis to Experiment l's. That is, the model 
first estimates the reliable letter-word processing variance within lexical decision and learning 
tasks (i.e. by defining a factor for all tasks that involve letter-word processing). Then another part 
of the model assesses the common variance left over among learning tasks, after accounting for 
letter-word processing ability. If the memory-strength factor is still needed to explain the residual 
correlations among learning tasks, then the learning tasks will still load significantly on that 
factor. 

In a similar fashion, the choice-reaction time task can be used as an index of a motor- 
processing and response-selection factor common to all tasks. All previous factors can be nested 
within this new baseline factor and similar hypotheses assessed. That is, one can assess whether 



the letter-word processing and the doubly nested memory-strength factors are still needed after 
participants' motor abilities have been accounted for. 
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X2(34)=65 
BBNNI=985 
RMSEA=046 

Figure 3. 

An expanded latent-structure model for practiced recognition that separates memory strength 
from letter/word processing and motor abilities, and also includes a factor for resisting 
interference. Fit statistics are as in Figure 1. Path coefficients and other model results are 
presented in Table 3. 

Method 

Participants 

Participants were 505 Air Force recruits (92% male; 8% female) taken from the sample 
of "Experiment 1". About 12% were not analyzed for reasons discussed before. Hence 434 
participants were analyzed. 
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Procedure 

General 

This experiment's data is a subset of Experiment l's, so the same equipment and 
procedures for pair recognition and procedural learning were used. Therefore, I only describe the 
tasks unique to Experiment 2. 

Choice-reaction time task 

Three pound-signs, "###", were presented either on the left or right side of the screen. 
Right and left stimuli required right and left mouse clicks, respectively. The stimulus was 1.5 cm 
in height and 2 cm in length and displayed 8.5 cm either left or right of the column center in the 
center row of the screen. Feedback and accuracy sets were the same as in Experiment 1 tasks. 

This task was given in two replications. Replication 1 had a grace period of three practice 
blocks of 24 trials (balanced with respect to stimuli), after which 6 error-free sets were required 
of the participant. Replication 2 had no grace period and also required 6 error-free sets. Data 
used in modeling are only from the error-free sets. Two markers of the motor and response- 
selection factor were constructed by averaging time 1 right-response RT and time 2 left-response 
RT for marker 1, and the complementary set for marker 2. 

Lexical decision task 

Lexical decision trials employed the same display format as the pair-recognition tasks. 
For each participant, fifteen words were randomly selected from the population of words used in 
pair-recognition tasks with replacement (meaning some words appearing in the lexical decision 
task also appeared in later pair-recognition tasks). The 15 words defined a set of 105 distinct 
word-word pairs (hereafter WW pairs). Out of the WW pairs, 105 nonword-word pairs (hereafter 
NW pairs) were created by first permuting the positions of the WW words and then randomly 
selecting one word from the pair to be transformed to a nonword by vowel substitution. 

Participants did 8, stimulus-balanced, blocks of 26 lexical decision problems (all but two 
of the constructed problems). The entire test was a different random sequence for each 
participant with the constraint that related WW-NW problems occur in different test halves. For 
instance, if wig/tea were given to the participant in the first half, later either toa/wig or tea/wug 
would be given in the second half. If either of the two NW pairs were given in the first half, then 
wig/tea was given later. WW trials required a right-click response and NW trials required a left- 
click. 

Because lexical decision problems never repeated, the methodology, which enforces 
accuracy by requiring error-free sets, could not be used. Instead accuracy was stressed as being 
important and accuracy-corrected RT feedback was given for each block. The accuracy-corrected 
feedback expresses participant RT performance as the sum of the response times divided by the 
number correct after correcting for guessing. Participants were encouraged to answer quickly by 
identifying their best accuracy-corrected RT score from the current or previous sets as the time to 
beat. 
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Each block's WW and NW median RT was computed. Averaging NW conditions from 
odd blocks with WW conditions from even blocks and averaging the complementary set of 
conditions formed the two lexical decision markers. 

Task Orders 

Choice-reaction time replication 1 and the lexical decision task were the first and second 
tests of the session, respectively. The first replication set of pair-recognition tasks followed (i.e. 
one baseline and two baseline+interference tasks). Next the second replication of choice-reaction 
time and the second replication set of pair-recognition tasks followed, respectively. Finally, there 
was a 5-min break and the procedural learning task. 

Results 

Descriptive and Correlational Data 

I only briefly describe the new tasks. The choice-reaction time task showed fast RT and 
high accuracy (291 msec and 98.6%, average median RT and accuracy over all conditions). The 
lexical decision task was considerably slower and less accurate (1044 msec and 91% correct, 
average median RT and accuracy over all conditions). While accuracy correlates to speed in both 
tasks, they do not correlate the same way (r(432)= .23 and r(432)= -.33, p_s<.001, for choice- 
reaction and lexical decision, respectively). As before, I statistically removed speed/accuracy 
effects from the RT scores and compared results for analyses on adjusted and raw RT scores. 

Modeling Procedure and Results 

Unfortunately the proximity effect that obscured model comparisons in Experiment 1 
also affected Experiment 2 results. I will outline my analysis procedure on the adjusted data, as 
the analyses with the raw data were closely parallel. As the presence or absence of the proximity 
effect in the model only qualitatively affected the presence of the interference factor, I will only 
provide descriptive information relevant to the interference factor. 

The first structure model fit was a version of Model 2, which did not account for the 
proximity effect (i.e. removed the correlated errors between the first two baseline+interference 
tasks that is shown in Figure 3). In this model all paths from factors to observed variables were 
free parameters and all factor variances (e.g. choice-reaction time, strength) were fixed at 1.0. 
The fit for the model was %2(35)=95 with interference betas for procedural learning epochs (1, 3, 
5) estimated at .10, .01, -.06, respectively, and for baseline+intereference tasks (1-4) estimated at 
.67*, .19*, -.01, -.12, respectively. Notice the two high loadings (where the asterisks indicate a 
z>3.0) reflect the proximity effect on the first two baseline+interference tasks. To test whether 
this effect had usurped the intended function for the interference factor, I next fit Model 2 adding 
a correlation between the errors of the first two baseline+interference tasks. As this model takes 
into account the proximity effect, the interference factor is "free to come back" to improve model 
fit, if it's needed. This model's fit was %2(34)=65 (a significantly better fit via a chi-square 
difference test). The interference betas provided by this model were .06, .23*, .28*, for 
procedural learning epochs (1, 3, 5), respectively, and .18, .32*, .43*, .48* for the 
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baseline+intereference tasks (1-4), respectively, which is consistent with Experiment 1 results. 
Finally, I fit a version of Model 2 that removed the proximity effect by excluding the first 
baseline+interference score from the analysis. This model's fit (x2(27)=40) is not directly 
comparable to the other model fits (owing to the different number of observed scores); however, 
the interference betas were .08, .25*, .29* for procedural learning epochs (1, 3, 5) and were .32*, 
.44*, .48* for baseline+interference tasks (2-4). The fact that the betas are very similar for 
models that account for or exclude the proximity effect indicates that the measurement of the 
interference factor was obscured when the proximity effect was not accounted for. 

The final latent structure model reported is the model with the proximity parameter 
included (i.e. Model 2 in Figure 3). The standardized solution (reflecting the best fitting 
parameters for the latent structure model) is given in Table 3. This model also fixed one factor 
path to 1.0 for each factor, allowing each factor's variance to be estimated as a free parameter. A 
reasonable rule of thumb is to fix the path for each factor that has the highest standardized 
loading on that factor (as determined by the model in which all paths are free and factor 
variances are all set to 1.0). Fixing a path (and freeing the variance) or fixing the factor (and 
freeing all paths) are mathematically equivalent models, although the initial starting values for 
model parameters may have to be different in order for the two models to converge to the same 
solution. 

Table 3. 

Standardized measurement equations for Model 2. 

Score 
PL1 
PL3 
PL5 
Bl 
B2 
BI1 
BI2 
BI3 
BI4 
LD1 
LD2 
CRT1 
CRT2 

AdjuKl isd 
CRT LWP    S RTI e 
20 .21   .14a .06n .95 
34 .29   .29 .23 .81 
35 .32   .36 .28 .75 
47 .39   .60 .52 
46 .33   .63F .53 
31 .37   .48 .18a .71 
34 .38   .50 .32 .62 
31 .36   .55 .43 .53 
28 .39   .55 .4 9F .47 
40 .87 .30 
38 .91F .16 
95 .32 
98F .19 

Notes. 
See Figure 3 for factor/score definitions and model fit statistics. Bold fonts and regular fonts are 
significant z>6.0 and z>3.0, respectively. F, a, and n superscripts indicate a fixed parameter 
(path) significant at z>2, and not significant, respectively. Model zs for RT, LWP, S, and RTI 
variances (respectively): 13.1, 13.0, 8.0, 4.9. Residual correlations r(PLl,PL3), r(PLl,PL5), and 
r(PL3,PL5) are estimated at .59, .44, .78 (zs>6). The proximity effect, or the residual correlation 
r(BIl,BI2), is estimated at r=.40 (z>6). n=434. 
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Finally, when Model 1, with a proximity parameter, is fit to Experiment 2's data, loadings 
on the interference factor are very close to the ones in Table 3 (i.e. .06, .22, and .27 for 
procedural learning and .19, .33, .45, and .51 for baseline+interference tasks). This result 
provides an interesting demonstration, namely that expanding nested factor models to include 
more factors (and approximately doubling the number of free parameters) does not necessarily 
obviate the need for, or change the qualitative patterns of, factors which are nested in the new 
model factors. 

Discussion 

Main Results 

Experiment 2 reflects a better design by including measurement of other hypothetical 
information-processing stages that could reside in the baseline factor of Experiment 1. When 
memory strength was deconfounded from these other abilities, the factor was still evident. 
Additionally, memory strength increased in importance against procedural learning with practice 
on the latter as expected by skill-acquisition theories where memory strength is an important rate 
limiting factor (e.g. Anderson, 1987; Anderson, 1992; Logan, 1990). Resistance to interference 
had similar effects in the more inclusive information-processing model of procedural learning. 

Other ability factors 

The choice-reaction time task marked a significant factor in common with practiced 
procedural learning (and pair recognition). This is expected from skill-acquisition theories that 
implicate motor abilities in later stages (e.g. Ackerman, 1988, 1990). The interesting news in the 
current study, however, is that rather than dominating prediction, motor ability's contribution 
was similar to the three other cognitive factors identified. Of course, one can always suggest that 
with more practice motor abilities would eventually dominate. 

The lexical decision task also marked a significant factor in common with practiced 
procedural learning (and pair recognition). This suggests either access to semantic memory (as 
might occur in parity or magnitude judgments in procedural learning) or letter/word processing 
stays important in procedural learning performance as the skill tends towards automaticity. 

More on Skill Specificity 

An important trend in Table 3 (which also occurs in Figure 1) is the decreasing error 
residual for the later procedural learning epochs. In other words, the later epochs are being 
predicted better than earlier ones by the ability factors I investigated. The internal reliability of 
the procedural learning epochs cannot account for this effect because they are static (see Table 2 
notes). This obviously contradicts the skill-specificity hypothesis introduced before which states 
that general individual differences decrease with task practice and are replaced by task-specific 
variance. 

Ackerman (1990) thought it important to demonstrate counterexamples to the skill- 
specificity hypothesis. In particular, he showed a practiced motor/aiming task increased in 
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communality to simulated air-traffic controller performance, as the latter became increasingly 
practiced and more dependent on operating the controls than strategic thinking. Hence, 
motor/perceptual abilities are not encapsulated to the task they are learned but reflect individual 
differences general to different tasks. The current results extend Ackerman's counterexample by 
showing the skill-specificity hypothesis can be contradicted in a largely cognitive domain by 
memory-related abilities (e.g. stable letter-word processing proficiencies, memory strength, and 
interference). 

However, the idea of a factor's increasing "importance" to a task with task practice 
should be carefully considered. The importance of a factor when conveyed by the standardized 
measurement equations (which is what I report and what is typically reported) indicates how 
much the factor influences a score relative to that score's standard deviation. However, the 
importance as conveyed by the unstandardized equations indicates how much of the factor is 
used in an absolute sense (i.e. the unstandardized equations express observed test scores in terms 
of linear functions of the factors). In contrast to the standardized factor betas, the unstandardized 
B weights can stay the same or even decrease for later procedural learning epochs. Therefore, 
when a factor increases its "importance" to a task with task practice this can also mean that the 
factor is static in its importance throughout learning. However, such factors may account for 
proportionally more task variance, later in practice, because initial performance drivers (e.g. 
controlled processing) have become less important. 

General Discussion: What a Latent-Structure Perspective Contributes to Cognitive Psychology 

The primary methodology that allowed separation of interference and memory strength in 
recognition comes from a specific type of model used in confirmatory factor analyses, called a 
"nested factor" model (Gustafsson and Balke, 1993). As Experiment 2 shows, a strict nesting of 
experimental conditions (as occurred only for pair-recognition tasks) is not a requirement; 
though strict nesting makes the psychological interpretation of the factor more defensible. 

Nested-factor modeling is a good alternative to exploratory factor analysis applied to a 
diverse set of memory tasks. The latter method has not proven very powerful at isolating 
different memory abilities or systems (e.g. Malmi, Underwood, and Carroll, 1979; Underwood, 
Boruch, Malmi, 1978). Nested-factor modeling might also be viewed as a practical complement 
to estimating (different) abilities via cognitive models of performance. This approach uses 
parameter values from a theoretical performance function fit to each subject as the individual- 
differences measures (Lohman, 1994; Jensen, 1987; Sternberg, 1977). 

One interesting parallel between psychometric methods, as embodied by nested-factor 
modeling, and cognitive psychology is the emphasis on stage decomposition. It is my belief that 
nested-factors models allow a proof-by-construction method for determining whether a task 
operation reflects a "stage". If an experimental manipulation (or a set of tasks) introduces a new 
ability with measurable independence from other abilities, this would seem at least as diagnostic 
and intuitive as other methods proposed for stage identification (e.g. additive factors, Sternberg, 
1969). However, the failure to find any uniqueness between two proposed stages, in the 
individual-differences sense, has no bearing on whether the stages are distinct. It is logically 
possible for two distinct stages to depend on the same sorts of processing ability. The individual- 
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differences heuristic for a stage, that I consider here, also makes no claims about serial/parallel 
or stage ordering issues. 

The lesson's learned with a latent-structure perspective can comport with the assumptions 
of cognitive psychology or be surprising. The finding of distinct strength and interference factors 
for procedural and declarative recognition tasks support a general assumption that strength and 
interference are distinct limitations of such tasks. This finding was expected given nomothetic 
perspectives of such tasks. Another finding supportive of current cognitive perspectives was the 
demonstration that memory-strength ability is at least as important to late skill performance as 
other abilities (c.f. Woltz, 1988). 

However, the lack of correlation between activation processes in practiced recognition 
and controlled-processing ability could be construed as surprising, at least relative to specific 
literatures (e.g. Cantor and Engle, 1993). A strong belief for the overlap between these two 
processing domains might have been expected given the central place for activation in some 
unified cognition theories (e.g. ACT*, Anderson, 1983, although see Anderson, Reder, Lebiere, 
1996 which is more ambiguous on this issue). However, the activation ability, defined and 
investigated here, would apparently not extend to working memory tasks. Therefore, the 
common use of term "activation" in working memory contexts (e.g. Anderson and Matessa, 
1997) and in practiced skill contexts is misleading. In summary, despite the fact the effect of 
"activation limitation" can be modeled in highly similar ways (i.e. behave homologously) across 
the two contexts, the fact that they can is not a test of their sameness, as the individual- 
differences data can clearly show. 
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Footnotes 

1. A "pure interference" task that does not depend on memory strength would seem unlikely, as 
strength is ubiquitous in the modeling of memory retrieval (e.g. SAM and ACT-type 
theories). However, a pure "memory strength" task might also be hard to defend. Graphemic, 
orthographic, and semantic similarity of words might provide uncontrolled sources of 
interference. Also pre-experimental word associations and within and between-task effects 
(e.g. list-length, and proactive inhibition) might also contribute. While I can't dismiss the 
possibility of such effects, I can note that they are equally represented in the baseline and 
baseline+interference tasks. Hence, if such effects were large and of similar nature to the 
interference ability defined by Model 1, there should be no variance left over in an observed 
score after prediction by the baseline factor. One might also expect some weakening of an 
interference factor, defined by the experimental manipulation, in proportion to the amount of 
uncontrolled interference effects in the baseline. 

2. This analysis did not include or depend on the proximity parameter between the first two 
baseline+interference replications, and results replicate using scores unadjusted for accuracy 
and trials-to-criterion data. For adjusted scores, x2(45)=l64; p<.001, Bentler-Bonett 
Nonnormed fit = .966. Root Mean Square Error of Approximation = .057. Model zs for S , 
RTI, and general ability variances: 14.3, 6.4, 10.2, respectively. Finally, for the general 
ability tests, the general science and word knowledge tests were allowed to have correlated 
errors to account for a large residual correlation between them (i.e. a verbal ability factor 
nested in general ability). 

3. Ranking scores removes the information present in the variance of the scores (i.e. the 
resultant standard deviation for every score becomes a function of sample size). For many 
models it is inappropriate to model score correlations with equal standard deviations for 
every score. However, with "fully nested" models estimated via maximum likelihood (the 
approach of Model 1 and 2), results on correlation matrices of z-scored variables (i.e. scores 
with equal standard deviations) will be the same as the results on full covariance structures 
(Krane and McDonald, 1978 cited in Cudeck, 1989). 

4. Here I report Study D (n=478) which differs from Experiment 2 by: 1) using Pentium 
machines and 2) using a lexical decision task that employed all 48 3-letter nouns in 288 
problems (as opposed to just a subset of 15 nouns in 208 problems). I report Model 2 fit on 
adjusted data (as raw data results qualitatively replicate). Betas for the 4 factors for 
procedural learning (epochs 1, 3, and 5, respectively) were: CRT(.19, .30, .32), LWP(.32, 
.37, .37), S(.21, .37, .42), RTI(.22, .29, .28), for baseline+interference tasks (BI1-BI4, 
respectively): RTI(.31, .32, .42, .28). The above betas were significant with z>3.0. Factor 
variances had zs of 15.4, 13.9, 8.8, 4.1, for CRT, LWP, S, and RTI, respectively. The 
proximity parameter was significant at z=2.7 (r=16). Fit was x2(34)=62; p<.003. 
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